2 UNSW

NICTA

Caches:
What Every OS Designer Must Know

COMP9242
2010/S2 Week 4

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 1

Copyright Notice Jeo UNSW

NICTA

These slides are distributed under the Creative Commons
Attribution 3.0 License

- You are free:
- to share — to copy, distribute and transmit the work
- to remix — to adapt the work

- Under the following conditions:

- Attribution. You must attribute the work (but not in any way that suggests
that the author endorses you or your use of the work) as follows:

“Courtesy of Gernot Heiser, UNSW”

- The complete license text can be found at http://
creativecommons.org/licenses/by/3.0/legalcode

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

The Memory Wall e UNSW

—
=
=]
o
-
RY
o
O

“Moore’s Law’

Processor-Memory
Performance Gap:

-
o
o

-
o

Performance

Multicore offsets stagnant per-core performance with proliferation of cores
- Basic trend is unchanged

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 3

Caching Yo UNSW

NICTA

- Cache is fast (1-5 cycle access time) memory sitting between fast registers
and slow RAM (10-100 cycles access time)

Holds recently-used data or instructions to save memory accesses
Matches slow RAM access time to CPU speed if high (> 90%)
Is hardware maintained and (mostly) transparent to software

Sizes range from few KiB to several MiB.

Usually a hierarchy of caches (2-5 levels), on- and off-chip

N2 20 20 2\

Good overview of implications of caches for operating systems: [Schimmel 94]

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 4

Cache Organization Yo UNSW

NICTA

- Data transfer unit between registers and L1 cache: < 1 word (1-16B)

- Cache /ine is transfer unit between cache and RAM (or slower cache)
typically 16—32 bytes, sometimes 128 bytes and more

- Line is also unit of storage allocation in cache
- Each line has associated control info:
- valid bit
modified bit
tag
- Cache improves memory access by:
- absorbing most reads (increases bandwidth, reduces latency)
making writes asynchronous (hides latency)
clustering reads and writes (hides latency)

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 5

Cache Access e UNSW

NICTA

Virtual Physical Physical
Addresg Address Address

»

Data

-~ Virtually indexed: looked up by virtual address
- operates concurrently with address translation

- Physically indexed: looked up by physical address
« requires result of address translation

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 6

Cache Indexing e UNSW

NICTA
Address

v

tag

tag data

- The fag is used to distinguish lines of set...
- Consists of high-order bits not used for indexing

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 7

Cache Indexing e UNSW

Set0 Line 1

_Line 2

Set 1 _

- Address is hashed to produce index of /ine set.
- Associative lookup of line within set
- nlines per set: n-way set-associative cache.
- typicallyn=1...5, some embedded processors use 32—64
« n=1iscalled direct mapped.
+ n=oijs called fully associative (unusual for CPU caches)
- Hashing must be simple (complex hardware is slow)
- use least-significant bits of address

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 8

Cache Indexing: Direct Mapped

tag (25)

index .

byte ,

e UNSW

NICTA

Lower bits used to
select appropriate
bytes from line

Index bits used
to select
unique line to
match

VD Tag Word 0 Word 1 Word 2 Word 3

T Tag used to check

whether lines contains
requested address

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

Cache Indexing: 2-Way Associative

e UNSW

NICTA

Lower bits used to
select appropriate
bytes from line

tag ¢, index byte,
- VD | Tag Word 0 Word 1 Word 2 Word 3
$ VD Tag Word 0 Word 1 Word 2 Word 3
Index bits
used to
select set to
match within VD | Tag Word 0 Word 1 Word 2 Word 3
VD | Tag | Word 0 Word 1 Word 2 Word 3
I Tag compared with

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

both lines within set
for match

10

Caching Index: Fully Associative e UNSW

NICTA

Lower bits used to
select appropriate
bytes from line

tag(zs) byte(4)

Note: Lookup hardware for many tags Tag compared with all
. lines for a match
is large and slow = does not scale

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 11

Cache Mapping e UNSW

NICTA

- Different memory locations map to same cache line:

BEE - Bl - I-! - EE - T EEE
RAM
|
y
. n-1 Cache

- Locations mapping to cache set # i are said to be of colour i

- n-way associative cache can hold 1 lines of the same colour
- Types of cache misses:
Compulsory miss: data cannot be in cache (of infinite size)
- first access (after flush)
- Capacity miss: all cache entries are in use by other data
Conflict miss: set of the right colour is full
- miss that would not happen on fully-associative cache
- Coherence miss: miss forced by hardware coherence protocol

- multiprocessors
©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 12

«

Cache Replacement Policy e UNSW

NICTA
- Indexing (using address) points to specific line set.
- On miss: all lines of set valid = must replace existing line.
- Replacement strategy must be simple (hardware)
« Dirty bit determines whether line needs to be written back
- Typical policies: Address
- pseudo-LRU tag e index,,, byte,,,
- FIFO |
- random
- toss clean
VD | Tag Word 0 Word 1 Word 2 Word 3
{ VD | Tag Word 0 Word 1 Word 2 Word 3

VD Tag Word 0 Word 1 Word 2 Word 3

VD Tag Word O Word 1 Word 2 Word 3

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 13

Cache Write Policy Je UNSW

NICTA

- Treatment of store operations:
write back: Stores update cache only
memory is updated once dirty line is replaced (flushed)
v clusters writes
* memory is inconsistent with cache
x unsuitable for (most) multiprocessor designs
- write through: Stores update cache and memory immediately
v" ' memory is always consistent with cache
x increased memory/bus traffic
- On store to a line not presently in cache, use:
write allocate: allocate a cache line to the data and store
- typically requires reading line into cache first!
- no allocate: store to memory and bypass cache
- Typical combinations:
- write-back & write-allocate
write-through & no-allocate

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 14

Cache Addressing Schemes e UNSW

NICTA

For simplicity, discussion so far assumed cache sees only one kind of
address: virtual or physical

However, indexing and tagging can use different addresses

Four possible addressing schemes:
virtually-indexed, virtually-tagged (VV) cache
- virtually-indexed, physically-tagged (VP) cache
- physically-indexed, virtually-tagged (PV) cache
physically-indexed, physically-tagged (PP) cache
PV caches can only make sense with complex and unusual MMU designs
not considered here any further

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 15

Virtually-Indexed, Virtually-Tagged Cache Q® UNSW

NICTA
- Also called
- virtually-addressed cache CPU
- Also (incorrectly) called
+ virtual cache
+ virtual address cache
- Uses virtual addresses only
. can operate tag(ze) index(z) byte(4)
concurrently with
MMU

- still needs MMU
lookup to determine
access rights

-> Used for on-core L1

!

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 16

Virtually-Indexed, Physically-Tagged Cache Q¢ UNSW

NICTA

- Virtual address for accessing line CPU
- Physical address for tagging
- Needs address translation

completed for retrieving data
- Indexing concurrent with MMU,

use MMU output for tag check —
- Typically used for indexg) byteu) ta90s)

on-core L1

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 17

Physically-Indexed, Physically-Tagged Cache Q® UNSW

NICTA

CPU
- Only uses physical addresses
- Needs address translation completed
before begin of access

- Typically used off-core
- Note: page offset is invariant under

virtual-address translation I

- if index bits are subset tag e index, byte,,,
of offset, PP cache can
be accessed without
result of translation!

- VP and PP cache
become the same in this
case

- fast and suitable for on-
core use (esp. L1)

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 18

Cache Issues e UNSW

- Caches are managed by hardware transparent to software
- OS doesn’t have to worry about them, Tigitt? Wrong!

> Software-visible cache effects:

« performance
- homonyms:

- same name, different data
- can affect correctness!

- Synonyms:
- different name, same data
- can affect correctness!

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 19

Virtually-Indexed Cache Issues e UNSW

NICTA

Homonyms — same name for different data:
- Problem: VA used for indexing is
context dependent

- same VA refers to different PAs

- tag does not uniquely identify data!

- wrong data is accessed! ta96) index,) byte,,

« anissue for most OS!
- Homonym prevention:

« flush cache on context
switch

- force non-overlapping
address-space layout

tag VA with address-space ID (ASID) _

- makes VAs global
- use physical tags

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

CPU

Virtually-Indexed Cache Issues e UNSW

NICTA

Synonyms (aliases) — multiple names
for same data:

- Several VAs map to the same PA
- frames shared between processes
- multiple mappings of frame within AS

- May access stale data: tagie) index,, byte,,

« same data cached in several lines

« on write, one synonym
updated

- read on other synonym
returns old value!

- physical tags don'’t help!
- ASIDs don’t help

CPU

MMU

- Are synonyms a problem?
| aesme o —
cache size

« no problem for R/O data or |-caches

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 21

Example: MIPS R4X00 Synonyms e UNSW

NICTA

- ASID-tagged, on-chip L1 VP cache

- 16KiB cache with 32B lines, 2-way set associative

4KiB (base) page size

set size = 16KiB/2 = 8 KiB > page size

overlap of tag and index bits, but come from different addresses!

_--VA

: E I index (8 bits)

35 11 tag (24 bits)0
offset PA

- Remember, location of data in cache determined by index
- tag only confirms whether it’s a hit!
synonym problem iff VA, # VA',,

similar issues on other processors, eg. ARM11 (set size 16KiB, page size 4KiB)

v Vv

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 22

Address Mismatch Problem: Aliasing e UNSW

NICTA
| write l
Address Space 1 4 4 Address Space 2
Page 0x00181000 Page 0x0200000
Cache

Physical Memory

- Page aliased in different address spaces
- AS:VA,=1,AS, VA, =0
- One alias gets modified

« in a write-back cache, other alias sees stale data
+ lost-update problem

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 23

Address Mismatch Problem: Re-Mapping e UNSW

NICTA
| write l
Address Space 1 4 4 Address Space 2
Page 0x00181000 Page 0x0200000
Cache

Physical Memory

- Unmap page with a dirty cache line
- Re-use (remap) frame for a different page (in same or different AS)

- Write to new page
- without mismatch, new write will overwrite old (hits same cache line)
- with mismatch, order can be reversed: “cache bomb”

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 24

DMA Consistency Problem e UNSW

NICTA

write

Cache

Physical

Memory t

DMA

- DMA (normally) uses physical addresses and bypasses cache
+ CPU access inconsistent with device access
« need to flush cache before device write
« need to invalidate cache before device read

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 25

Avoiding Synonym Problems

- Hardware synonym detection
- Flush cache on context switch
doesn’t help for aliasing within address space

—> Detect synonyms and ensure
- all read-only, OR
- only one synonym mapped

- Restrict VM mapping so synonyms map to same cache set
+ e.g., R4x00: ensure that VA, = PA,

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

e UNSW

NICTA

26

Summary: VV Caches

v Fastest (don’t rely on TLB for retrieving data)
x still need TLB lookup for protection
x or other mechanism to provide protection
% Suffer from synonyms and homonyms
x requires flushing on context switch
*x makes context switches expensive
x may even be required on kernel—user switch
... Or guarantee of no synonyms and homonyms
x Require TLB lookup for write-back!
- Used on MC68040, i860, ARM7/ARM9/StrongARM/Xscale

-> Used for I-caches on a number of architectures
Alpha, Pentium 4, ...

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

e UNSW

NICTA

27

Summary: Tagged VV Caches e UNSW

NICTA

- Add address-space identifier (ASID) as part of tag
- On access compare with CPU’s ASID register
v" Removes homonyms

v" potentially better context switching performance
x ASID recycling still requires cache flush

% Doesn’t solve synonym problem (but that’s less serious)
x Doesn’t solve write-back problem

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

28

Summary: VP Caches

- Medium speed:
v" lookup in parallel with address translation
x tag comparison after address translation

No homonym problem
Potential synonym problem

Bigger tags (cannot leave off set-number bits)
x increases area, latency, power consumption

-> Used on most modern architectures for L1 cache

x

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

e UNSW

NICTA

29

Summary: PP Caches e UNSW

NICTA

N2

N 2 2\ Z

v oV

Slowest
requires result of address translation before lookup starts
No synonym problem
No homonym problem
Easy to manage

If small or highly associative (all index bits come from page offset) indexing
can be in parallel with address translation.

Potentially useful for L1 cache (used on Itanium)
Cache can use bus snooping to receive/supply DMA data
Usable as off-chip cache with any architecture
For an in-depth coverage of caches see [Wiggins 03]

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 30

Write Buffer

- Store operations can take a long time to complete
e.g. if a cache line must be read or allocated

- Can avoid stalling the CPU by buffering writes

> Write bufferis a FIFO queue of incomplete stores
also called sfore buffer or write-behind buffer

- Can also read intermediate values out of buffer
to service load of a value that is still in write buffer
avoids unnecessary stalls of load operations

- Implies that memory contents are temporarily stale
on a multiprocessor, CPUs see different order of writes
“‘weak store order”, to be revisited in SMP context

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

e UNSW

NICTA

CPU

1

Store A

Store B

Store A
h - ..

31

Cache Hierarchy

- Hierarchy of caches to balance memory accesses:

- small, fast, virtually indexed L1
- large, slow, physically indexed L2—-L5

- Each level reduces and clusters traffic.
- L1 typically split into instruction and data caches.
« requirement of pipelining
- Low levels tend to be unified.
- Chip multiprocessors (multicores) often
share on-chip L2, L3

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

CPU

A

TLB is a (VV) cache for
page-table entries
TLB can be:

- hardware loaded,
transparent to OS, or

- software loaded,
maintained by OS
TLB can be:

- split, instruction and
data TLBs, or

« unified
Modern high-performance

architectures use a hierarchy of TLBs:

v

v

EERERERE

Translation Lookaside Buffer (TLB)

e UNSW

NICTA

- top-level TLB is hardware-loaded from lower levels

« transparent to OS

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

ASID VPN PFN flags

33

TLB Issues: Associativity Yo UNSW

NICTA

- First TLB (VAX-11/780, [Clark, Emer 85]) was 2-way associative
- Most modern architectures have fully associative TLBs
- Exceptions:
- 1486 (4-way)
Pentium, P6 (4-way)
IBM RS/6000 (2-way)
- Reasons:
modern architectures tend to support multiple page sizes (superpages)
- better utilises TLB entries
TLB lookup done without knowing the page’s base address

set-associativity loses speed advantage
superpage TLBs are fully-associative

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 34

TLB Size (I-TLB + D-TLB)

e UNSW

NICTA

Architecture ILB Size | Page Size ILB Coverage
VAX 64-256 | 512B 32-128KiB

ix86 32-32+64 | 4AKiB+4MiB | 128-128+256KiB
MIPS 96-128 | 4KiB-16MiB | 384KiB-...
SPARC 64 | 8KiB-AMiB | 512KiB-...
Alpha 32-128+128 | 8KiB-AMiB | 256KiB-...
RS/6000 32+128 | 4KiB 128+512KiB
Power-4/G5 128 | 4KiB+16MiB | 512KiB-...
PA-8000 96+96 | 4KiB-64MiB

[tanium 64+96 | 4KiB-4GiB

Not much growth in 20 years!

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

35

TLB Size (I-TLB + D-TLB) Yo UNSW

NICTA

TLB coverage
- Memory sizes are increasing
> Number of TLB entries are more-or-less constant

- Page sizes are growing very slowly
total amount of RAM mapped by TLB is not changing much
fraction of RAM mapped by TLB is shrinking dramatically

- Modern architectures have very low TLB coverage

- Also, many modern architectures have software-loaded TLBs
General increase in TLB miss handling cost

- The TLB is becoming a performance bottleneck

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 36

Address Space Usage vs. TLB Coverage Yo UNSW

NICTA

- Each TLB entry maps one virtual page
- On TLB miss, reloaded from page table (PT), which is in memory
Some TLB entries need to map page table
E.g. 32-bit page table entries, 4KiB pages
One PT page maps 4MiB
- Traditional UNIX process has 2 regions of allocated virtual address space:
low end: text, data, heap
high end: stack
2-3 PT pages are sufficient to map most address spaces
- Superpages can be used to extend TLB coverage
however, difficult to manage in the OS

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 37

Sparse Address-Space Use e UNSW

NICTA

e [T

< -~ c -~ g = -

page table

I V¥

q

UNIX virtual address éb’ace

ki ki

Sparse virtual address space

Ties up many TLB entries for mapping page tables

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 38

Origins of Sparse Address-Space Use e UNSW

NICTA

- Modern OS features:
memory-mapped files
dynamically-linked libraries
mapping IPC (server-based systems)...
- This problem gets worse 64-bit address spaces:
bigger page tables

- An in-depth study of such effects can be found in [Uhlig et al. 94]

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 39

Case Study: Context Switches on ARM “e UNSW

NICTA

Typical features of ARM v4/v5 cores with MMU:

-~ Virtually-addressed split L1 caches
No L2 cache

9

- No address-space tags in TLB or caches
- Other features to be discussed later
9

Representatives:
ARM7, StrongARM (ARMv4)
ARM?9, Xscale (ARMv5)

The following is based on [Wiggins et al. 03], updated with [van Schaik 07]

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 40

ARM v4/v5 Memory Architecture e UNSW

Physical
Address

D-Cache

MVA

S

- Virtually-indexed, virtually-tagged caches

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 41

ARM Cache Issues

- Virtually-indexed, virtually-tagged caches
Contents are tied to address space
- For coherency, flush caches on context switch
- Flushing is expensive!
« Direct cost: 1k-18k cycles
« Indirect cost: up to 54k cycles
- Permissions from TLB

- Could avoid flushes if no address-space overlap
Infeasible in normal OS

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

e UNSW

ARM PID Relocation e UNSW

NICTA

0 32MB 2GB 4GB

PID

- Processor supports relocation of small address spaces
- Lowest 32MiB of AS get mapped to higher regions
« Mapping slot selected by process-ID (PID) register
- Re-mapping happens prior to TLB lookup

- Re-mapped address spaces don't overlap
« no need to flush caches on address-space switch

- Sounds fine, but what about protection?

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 43

ARM v4/v5 TLB e UNSW

2 bits 4 bits 8 bits 20 bits

Perms

\ A 4

- No address space tags on TLB entries
- However, 4 bit domain tag
- Domain access control register en/disables domains

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 44

ARM TLB Issues e UNSW

NICTA

- No address-space tag in TLB
Need to keep mappings from different AS separate
- Flush TLB on context switch
- Flushing is expensive!
- Direct cost: 1 cycle
- Indirect cost: 3k cycles
- Permissions on cache data from TLB
- TLB flush requires cache flush!
- Better: make use of domains
- Use as poor man's address-space tags
Play tricks with page tables

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

45

Domains for Fast Address-Space Switch e UNSW

NICTA

. copy & flush

CDP

DACR

Caching page directory mixes entries from different AS
Tagged with per-address-space domain

Hardware detects collisions (via DACR)

Full performance if no overlap, flush on collisions
Implementation details in paper

N2\ 20 20 28\ Z

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 46

Fast Address-Space Switching e UNSW

NICTA

- Multiple ASs co-exist in top-level page table and TLB

- TLB and cache flushes are only required on collisions
- minimised by the use of PID relocation
minimised by the use of a single-address-space layout (Iguana)
may happen as a result of:
- address-space overflow (with PID relocation)
- conflicting mappings (mmap with MAP_FIXED)
- out of domains

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 47

Fast Address-Space Switch Issues e UNSW

NICTA

- Only 16 domains
« Must recycle domains when exhausted
- User-level thread control blocks (UTCBSs)
- Aliased between user and kernel
- There are ways to make this work
- Better: let kernel determine UTCB location (as in OKL4)

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 48

OKL4 Implementation Yo UNSW

NICTA

- Kernel transparently assigns domains
1 reserved for kernel, 15 available for user processes
- When out of domains, preempt one and flush
- Kernel keeps track of domains used since last flush
If not used since last flush, domain is clean
- if possible, preempt clean domain, requires no cache flush
otherwise preempt a random domain

- Kernel keeps per-domain bitmask of used CPD entries
supports easy detection of AS collisions (at 1 MiB granularity)

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 49

Alternative Page Table Format e UNSW

NICTA

CDP

DACR

- Top level of AS's page table is no longer hardware walked
16KiB is mostly wasted on small processes (typical in embedded)

- Can replace by more appropriate (denser) data structure

- Save significant amount of kernel memory (up to 50%)

- Same benefit on ARM v6

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 50

Performance: Linux Microbenchmarks

Benchmark Nativel Wombat Ratio
Imbench latencies [us] smaller is better

lat_ctx -s 01 11 200 06
lat_ctx -s 0 2 262 5 52
lat_ctx-s 010 298 451 6.6
lat_ctx -s 4 1 48 58] 0.8
lat_ctx-s 410 413 203 2.1
lat_fifo 503 49 10
lat_unix 1015 771 13

~o UNSW

NICTA

Native Linux vs OKL4/Wombat on PXA255 @ 400MHz

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

51

Microseconds

Performance:
OKL4 with FASS vs Standard Linux

400

350

300

250

200

150

100

50

Imbench context-switch latency

Y
‘IIIIIlIIIIII“

5

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

e UNSW

Native Linux e
Womblat g

Processes

Performance:

OKL4 with FASS vs Standard Linux

e UNSW

NICTA
Imbench pipe bandwidth
70 ™ —_— — —— _
Native Linux e
‘\“",' Wombat e
60 | :_‘\ ,"' |
0 i
40 | :: :: |
9 3 2
o) 3 :
= s =
30 3 : |
20 B :5 -=|III|IIIII|]
10 + ac’ |
0 -) o . o ‘
10 100 1000 10000 100000
Message Size

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

53

o UNSW

NICTA

Performance: Linux Microbenchmarks

Benchmark Native Wombat Ratio
Imbench latencies [us], smaller is better

lat_proc procedure 0.21 0.21 1.0
lat_proc fork 5679 8222 0.7
lat_proc exec 17400 26000 0.7
lat_proc shell 45600 68800 0.7
Imbench bandwidths [MB/ s], larger is better

bw_file_rd 1024 i0_only 38.8 26.5 0.7
bw_mmap_rd 1024 mmap_only 106.7 106 1.0
bw_mem 1024 rd 416 412.4 1.0
bw_mem 1024 wr 192.6 191.9 1.0
bw_mem 1024 rdwr 218 216.5 1.0
bw_pipe /.55 20.64 2.7
bw_unix 17.5 11.6 0.7

Native Linux vs OKL4/Wombat on PXA255 @ 400MHz

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

54

Issues: Sharing Yo UNSW

NICTA

- Linux server and Linux app share data (argument buffers)

- Standard FASS scheme sees this as collisions
flushes caches and TLB
- Implemented vspace feature
allows identifying AS “families” with non-overlapping layout
sharing within family avoids cache flush
- TLB still flushed
- details in [van Schaik 07]
- TLB flushes are unnecessary overhead
- performance degradation, especially on I/O syscalls

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

55

Better Approach to Sharing e UNSW

NICTA

Objectives

- Avoid TLB flushes on ARM v4/v5
need to use separate domain ID for shared pages

need an API for this

- Allow sharing of TLB entries where HW supports it
ARM, segmented architectures (PowerPC, Itanium)

- Unified API abstracting over architecture differences
i Iy

X
. H-

y

H B c

X y

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

56

ARM Domains for Sharing e UNSW

CDP

-

/
wa X X

DACR

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 57

Better Approach to Sharing

Idea: Segments as an abstraction for sharing
- Direct match on PowerPC, Itanium

- Maps reasonably well to ARM

Provided sharing is at same virtual address

- Maps well to typical use

1 B

e UNSW

i |
1

X

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

i1
|

Segment APl Implementation (ARM)

- Allocate unique domain ID first time a segment is mapped
Provided segment base and size is aligned to 1MiB
- Domain is freed when segment is unmapped from last AS
- Domain ID is enabled in DACR for all ASes mapping segment
- Will automatically share TLB entries for shared segments
- Provided full access rights for all sharers

- Allows avoiding remaining aliasing problems

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

e UNSW

NICTA

59

Conclusions e UNSW

NICTA

- Fast context-switching on ARM shows impressive results
Up to 50 times lower context-switching overhead
- Same mechanism supports reduction of kernel memory
Save 16KiB per process for top-level page table
- This accounts for up to half of kernel memory!
- Shared pages still require TLB flush
eg for Wombat accessing user buffers
- Segment API solves this elegantly
and also enables use of HW support for TLB sharing

©2010 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

60

