Memory Management
A View for Software
Engineers

Richard Braun

Memory Management
A View for Software Engineers

Richard Braun

April 7 2014

Framework

» C / Assembly
» Unix (POSIX)

> System / network programming

Memory Management
A View for Software
Engineers

Richard Braun

Introduction

Goals

vV v v v

Performance
Scalability
Debugging
Best practices

Memory Management
A View for Software
Engineers

Richard Braun

Introduction

Memory Management
A View for Software
Engineers

Hardware Layout
hard Braun

Hardware Overview

Front-side
bus

a
card slot

High-speed

graphics bus

(AGP or FCI Northbridge RZELSY
Express) bus

Chipset

Memory Slots

(memory
controller hub)

Onboard
graphics
controller

Southbridge

(1/0 controller
hub)

IDE
SATA
e Cables and
Audio Codec ports leading
CMOS Memory. off-board

PCl Slots

Flash ROM
(BIOS)

Figure: Common Intel-based hardware layout

CPU Cache Hierarchy

Main Memory
<=8 GB

Memory Management
A View for Software
Engineers

Richard Braun

Hardware Overview

Other
CPUs
L2 Unified
1 MB 16-way
3 A
L2 ITLB L2 DTLB
512 entries 512 entries
4-way 4-way
Y 1 A 4 y y
L1 Instruction Cache L1ITLB L1 DTLB L1 Data Cache
64KB 2-way 4KB | 412 MB 4KB | 4/2mB [| [64KB 2-way 2 ports
32 entries|8 entries| |32 entries|8 entries
full assoc [full assoc| |full assoc [full assoc]

Figure: AMD Athlon 64 K8 core hierarchy

Cache Lines

vV v vv

Processors transfer memory in units of cache lines
Cache lines are stored in processor caches (L1/L2/L3)
Data with close addresses are likely to share cache lines

Current cache line sizes are usually 32 bytes (embedded) or
64 bytes (desktop/server)

Memory Management
A View for Software
Engineers

Richard Braun

Hardware Overview

Memory Management

Symmetric Multiprocessor A View for Sftare

Engineers

Richard Braun

Hardware Overview

SMP - Symmetric Multiprocessor System

Main
Memory
Bus System Bus
Arbiter I]
Cache Cache Cache 1/0

=1 2

Non-Uniform Memory Access

P!PP!T! Plle]ie e
\ BUS | \ BUS !

I I
[Memory \ [Memory]

DSM Network
with Directory

. Memory Management
Memory Hierarchy

A View for Software
Engineers

rd Braun

Computer Memory Hierarchy e @i

small size

processor registers
small capacity

very fast, very expensive

power on
immediate term
small size

processor cache
small capacity

very fast, very expensive

medium size

power on random access memory
medium capacity very short term fast, affordable
small size power off flash / USB memory
large capacity short term slower, cheap
large size power off hard drives
very large capacity mid term slow, very cheap
large size power off tape backup
very large capacity long term

very slow, affordable

Direct Memory Access

vV vV v v v v .Y

Transfer data without consuming processor cycles
Transfers in burst / cycle stealing / transparent modes
Address / data bus sharing

Arbitration required, can cause latency indeterminacy
Third-party DMA: dedicated DMA controllers (e.g. ISA)
First-party DMA: bus mastering (e.g. PCl, AMBA AHB)
Cache coherency issues

Memory Management
A View for Software
Engineers

Richard Braun

Direct Memory Access

Memory Management

D | rect M em Ory Access A View for Software

Engineers

Ric Braun

Db, Ak eelpe
DA Fatguasl Direct Memory Access
Contral signals DirAA
crU + controller
A o E_
Acdress bus |
fAamory
(RAMT | |

Figure: Third-party DMA

Data Storage Devices

Magnetic storage: regular file systems (ext4, zfs, btrfs)

» Flash memory: CF/MMC/SD, USB keys, SSD (NAND based)

v

vV v . vvY

Main flash types: NOR (slow, small) and NAND (faster,
larger)

Basic operation: block erasure

Flash Translation Layer: block selection, wear leveling
Without FTL, use specialized file systems (jffs2, ubifs)
Reliability: use ECC memory to prevent bit flips

Memory Management
A View for Software
Engineers

Richard Braun

Data Storage Devices

Memory Management

Vl rtua | M em Ory A View for Software

Engineers

Richard Braun

Virtual Memory

Swapping: more memory than physically available
Address spaces: isolate processes from each other
Shared memory: reuse physical memory in many processes

Access rights: fine-grained permissions on shared memory

vV v v v Y

Paging: manage virtual memory in page units

A View for Software
Engineers

. Memory Management
Virtual Address Space

Richard Braun

Virtual address space Physical address space

text 0x00000000
Virtual Memory
0x.

data

OxOOffffff
stack

D page belonging to process
OXTFffff

D page not belonging to process

Figure: Virtual-to-physical address translations

Physical Translations

» MMU: Memory Management Unit
» Handles virtual-to-physical address translations

» Dedicated processor cache: TLB (Translation Lookaside
Buffer)

» Translation unit: the page

» Modern processors can configure the page size, from 4 KiB
up to 2 GiB (c.f. Linux hugetlbfs)

» Virtualization: nested page tables

Memory Management
A View for Software
Engineers

Richard Braun

Physical Translations

Memory Management

Physical Translations A View for Sftware

Engineers

Linear address:

31 24|23 16|15 817 0
10 10 12
page directory Physical Translations
page table "
. H
. o
g
32 bit PD . a
entry L H >
> <]
£
£
= 32 bit PT
. entry *— ¥
32" E .
CR3 >

*) 32 bits aligned to a 4-KByte boundary

Figure: 2-level x86 page table structure

Memory Management

Logical Translations A View for Sftware

Engineers

Richard Braun

» Address space: list of per process mappings

> Page: basic unit of memory, referenced in a memory object
when resident (i.e. present in physical memory) Logical Translations

» Memory object: provides memory content (e.g. files)

» Mapping entry: associates a memory object with virtual
addresses

» Page fault: exception used to implement on-demand paging
» Copy-on-write: make fork and data copies fast (zero-copy)

> Locked memory: underlying physical pages can't get evicted

Memory Management
A View for Software

Logical Translations o

» vm_end: first address outside virtual memory area

——» vm_start: first address within virtual memory area

- stack

vm_area_struct
(anonymous}

- VM_READ | VM_WRITE
| | WM_GROWS_DOWN

vm_next e
|._ vm_area_struct
wm_file VM_READ | VM_EXEC — Memory
L = mapping
vm_next : !
struct file i vm_area_struct Logical Translations
/1ib/1ibe.so wm_file VM_READ | VM_EXEC |

Heap

vm_area_struct
(ancnymous}

VM_READ | VM_WRITE

BSS
(anonymous)

vm_area_struct Data

l«—vm_file VM_READ | VM_WRITE (file-
- > backed)

struct file
fbin/genzo wvm_area_struct Text
VM_READ | VM_EXEC (File-

+ backed)

mmap
|
task_struct mm I
(/bin/gonzo) =

Figure: Virtual address space structure of a Linux process

Memory Management

Logical Translations A View for Sftware

Engineers
hard Braun
process 1 (init) process 4 (sh)
vmspace
pmap (.]
vm_map
map entry |~ HI;PI;I———;I
(points to process 4's
amaps and objects)
vm_amap Logical Translations
vm_anon

vm_page (anon)

Isbin:init /binish

from

uvm_object process 4

vm_page (object)

uvm_pagerops 7
device vnode aobj

3 swapiiofns

swap space

Figure: NetBSD UVM overview

Memory Management

The Page CaChe A View for Software

Engineers

Richard Braun

" Free memory” should be thought of as " unused memory”

Make use of that memory in the form of a data cache

The Page Cache

Data (file or disk) are cached in physical memory pages
Writeback caching: flushes on eviction or after a timeout

Eviction is triggered by memory pressure only

vV vVv.v v v .Y

LRU-like algorithms select evicted pages

Memory Mapping

vV vVv.v v v .Y

Access data (files, disks, devices) as memory
Optimize data transfers with zero-copy techniques
Mappings are either shared or private

Share memory by mapping content in multiple address
64-bits systems benefit the most

POSIX: mmap, munmap, mprotect

Memory Management
A View for Software
Engineers

Richard Braun

Memory Mapping

spaces

Memory Management

E n d |a NNess A View for Software

Engineers

Richard Braun

Data order in a word

Common orders: little endian and big endian
Big endian: 1234 ("natural” order)

Big endian is the standard " network byte order”
Little endian: 4321 ("reversed” order) Endianness

Little endian allows easy variable-size operations

vV vV v v v v .Y

POSIX: htonl, htons, ntohl, ntohs convert between network
and host byte orders

Memory Management
A View for Software

Endianness p

Richard Braun

struct iphdr

{

#if _BYTE_.ORDER == __LITTLE_ENDIAN
unsigned int ihl:4;
unsigned int version :4;

#elif _BYTE.ORDER — __BIG_ENDIAN
unsigned int version:4;
unsigned int ihl:4;

#else

error "Please_fix _<bits/endian.h>"

#endif
u_int8_t tos;
u_intl6_t tot_len;
u_intl6_t id;
u_intl6_t frag_off;
u_int8_t ttl;
u_int8.-t protocol;
u_intl6_t check;
u_int32_t saddr;
u_-int32_t daddr;

/*The options start here. x/

Endianness

Figure: Definition of the IP header in the GNU C library

Alignment

vV v.v. vy

Determine where data start in memory

Power-of-two value

Architecture can forbid unaligned memory accesses

When allowed, they're slower (still faster than a cache miss)

Locality of reference: pack data of the same working set close
to one another so they're loaded in common cache lines
Common practice: most frequently accessed members in a
structure come first

The alignment of a structure is the highest alignment of its
members

Usually requires implementation-specific compiler support for
advanced control, e.g. __attribute__((aligned(value)))

Memory Management
A View for Software
Engineers

Richard Braun

Alignment

Memory Management

Al |g nment A View for Software

Engineers

ard Braun

$ pahole x15

struct spinlock {
unsigned int locked; /% 0 4 x/

/* size: 4, cachelines: 1, members: 1 */
/* last cacheline: 4 bytes */

};
struct list {
struct list prev; /% 0 8 */
struct list next; /% 8 8 */
/* size: 16, cachelines: 1, members: 2 */
/* last cacheline: 16 bytes */
struct task { Alignment
struct spinlock lock; /% 0 4 %/
/* XXX 4 bytes hole, try to pack */
struct list node; /% 8 16 */
struct list threads; /% 24 16 */
struct vm_map * map; /* 40 8 x/
char name [32]; /* 48 32 */
/* --- cacheline 1 boundary (64 bytes) was 16 bytes ago --- */

/* size: 80, cachelines: 2, members: 5 */
/* sum members: 76, holes: 1, sum holes: 4 */
/* last cacheline: 16 bytes */

Data Structures

» Parameters: complexity, locality of reference, overhead
» Common structures: arrays, linked lists, hash tables, balanced

trees
» Modern structures: tries (radix trees, Judy arrays, etc...)

Memory Management
A View for Software
Engineers

Richard Braun

Data Structures

Memory Management

Data St ructures A View for Software

Engineers

Richard Braun

[kev [1

Data Structures

Figure: Internal structure of a radix tree

Type Punning

» Access the same memory through differently typed pointers

» Strict aliasing: two pointers of different type aren’t allowed to
refer to the same memory (introduced in C99)

» Cast: use only when you know what you're doing (may silence
important warnings, breaks strict aliasing)

» Cast: mind the expected alignment of the underlying memory,
e.g. casting char[] to struct x * may cause bus errors)

» Union pointer: the clean way (but implementation defined)

Memory Management
A View for Software
Engineers

Richard Braun

Type Punning

Access Control

vV v v v v Yy

Bad memory access control is a major source of bugs
Synchronize access to objects (e.g. with locks)
Compiler barriers: prevent code reordering

Memory barriers: prevent memory access reordering
Release on no-user guarantee (e.g. reference counters)

Garbage collection: automatic release once unreferenced (but
mind tricky situations producing stale references such as
circular references)

Advanced techniques: lock-free and wait-free algorithms,
batched reference counting (e.g. RCU)

Memory Management
A View for Software
Engineers

Richard Braun

Access Control

Memory Management

Rea | TI me A View for Software

Engineers

Richard Braun

Main constraints: no unexpected latency
Reserve all resources prior to execution
Disabling swap is not enough ! (doesn't prevent page faults)

Lock memory to prevent fetching data from disks

vV v.v v Yy

Bind to processor to prevent migration (and in turn, faults on
another processor)

» POSIX: locking memory prevents pageins, not page faults, i.e.
it may be required to manually access pages to fault them in

Real Time

Device Memory

Historic way: volatile pointers
Problem: restricted by C specification
Device memory should be mapped uncached

Use specialized kernel accessors (for example
io_remap_page_range on Linux)

Memory Management
A View for Software
Engineers

Richard Braun

Device Memory

Memory Management

C 1]_ A View for Software
Engineers

Richard Braun

» New C Standard

» New keywords and functions

> Alignment: _Alignas, _Alignof, aligned_alloc
» Multithreading: _Thread_local, _Atomic

» Analyzability

Memory Management

CO nc | us | on A View for Software

Engineers

Richard Braun

Further reading :

» What Every Programmer Should Know About Memory by
Ulrich Drepper

» Memory as a Programming Concept in C and C++, Frantisek
Franek

» The Design and Implementation of the FreeBSD Operating
System, Marshall Kirk McKusick and George V. Neville-Neil

» Memory Barriers: a Hardware View for Software Hackers,
Paul E. Mckenney

Conclusion

	Introduction
	Hardware Overview
	Peripherals
	Direct Memory Access
	Data Storage Devices

	Virtual Memory
	Physical Translations
	Logical Translations
	The Page Cache
	Memory Mapping

	Programming Considerations
	Endianness
	Alignment
	Data Structures
	Type Punning
	Access Control
	Real Time
	Device Memory
	C11

	Conclusion

