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Framework

I C / Assembly

I Unix (POSIX)

I System / network programming
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Goals

I Performance

I Scalability

I Debugging

I Best practices
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Figure: Common Intel-based hardware layout
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CPU Cache Hierarchy
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Figure: AMD Athlon 64 K8 core hierarchy
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Cache Lines

I Processors transfer memory in units of cache lines

I Cache lines are stored in processor caches (L1/L2/L3)

I Data with close addresses are likely to share cache lines

I Current cache line sizes are usually 32 bytes (embedded) or
64 bytes (desktop/server)
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Symmetric Multiprocessor

SMP - Symmetric Multiprocessor System
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Non-Uniform Memory Access

M M
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Memory Hierarchy
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Direct Memory Access

I Transfer data without consuming processor cycles

I Transfers in burst / cycle stealing / transparent modes

I Address / data bus sharing

I Arbitration required, can cause latency indeterminacy

I Third-party DMA: dedicated DMA controllers (e.g. ISA)

I First-party DMA: bus mastering (e.g. PCI, AMBA AHB)

I Cache coherency issues
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Direct Memory Access

Figure: Third-party DMA
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Data Storage Devices

I Magnetic storage: regular file systems (ext4, zfs, btrfs)

I Flash memory: CF/MMC/SD, USB keys, SSD (NAND based)

I Main flash types: NOR (slow, small) and NAND (faster,
larger)

I Basic operation: block erasure

I Flash Translation Layer: block selection, wear leveling

I Without FTL, use specialized file systems (jffs2, ubifs)

I Reliability: use ECC memory to prevent bit flips
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Virtual Memory

I Swapping: more memory than physically available

I Address spaces: isolate processes from each other

I Shared memory: reuse physical memory in many processes

I Access rights: fine-grained permissions on shared memory

I Paging: manage virtual memory in page units
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Virtual Address Space

Virtual address space Physical address space
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page not belonging to process

text

data

stack

Figure: Virtual-to-physical address translations
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Physical Translations

I MMU: Memory Management Unit

I Handles virtual-to-physical address translations

I Dedicated processor cache: TLB (Translation Lookaside
Buffer)

I Translation unit: the page

I Modern processors can configure the page size, from 4 KiB
up to 2 GiB (c.f. Linux hugetlbfs)

I Virtualization: nested page tables
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Physical Translations
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Logical Translations

I Address space: list of per process mappings

I Page: basic unit of memory, referenced in a memory object
when resident (i.e. present in physical memory)

I Memory object: provides memory content (e.g. files)

I Mapping entry: associates a memory object with virtual
addresses

I Page fault: exception used to implement on-demand paging

I Copy-on-write: make fork and data copies fast (zero-copy)

I Locked memory: underlying physical pages can’t get evicted
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Logical Translations

Figure: Virtual address space structure of a Linux process
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Logical Translations

Figure: NetBSD UVM overview
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The Page Cache

I ”Free memory” should be thought of as ”unused memory”

I Make use of that memory in the form of a data cache

I Data (file or disk) are cached in physical memory pages

I Writeback caching: flushes on eviction or after a timeout

I Eviction is triggered by memory pressure only

I LRU-like algorithms select evicted pages
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Memory Mapping

I Access data (files, disks, devices) as memory

I Optimize data transfers with zero-copy techniques

I Mappings are either shared or private

I Share memory by mapping content in multiple address spaces

I 64-bits systems benefit the most

I POSIX: mmap, munmap, mprotect
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Endianness

I Data order in a word

I Common orders: little endian and big endian

I Big endian: 1234 (”natural” order)

I Big endian is the standard ”network byte order”

I Little endian: 4321 (”reversed” order)

I Little endian allows easy variable-size operations

I POSIX: htonl, htons, ntohl, ntohs convert between network
and host byte orders
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Endianness

s t r u c t i p h d r
{

#i f BYTE ORDER == LITTLE ENDIAN
uns igned i n t i h l : 4 ;
uns igned i n t v e r s i o n : 4 ;

#e l i f BYTE ORDER == BIG ENDIAN
uns igned i n t v e r s i o n : 4 ;
uns igned i n t i h l : 4 ;

#e l s e
# e r r o r ” P l e a s e f i x <b i t s / end ian . h>”
#end i f

u i n t 8 t t o s ;
u i n t 1 6 t t o t l e n ;
u i n t 1 6 t i d ;
u i n t 1 6 t f r a g o f f ;
u i n t 8 t t t l ;
u i n t 8 t p r o t o c o l ;
u i n t 1 6 t check ;
u i n t 3 2 t sadd r ;
u i n t 3 2 t daddr ;
/∗The op t i o n s s t a r t he r e . ∗/

} ;

Figure: Definition of the IP header in the GNU C library
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Alignment

I Determine where data start in memory

I Power-of-two value

I Architecture can forbid unaligned memory accesses

I When allowed, they’re slower (still faster than a cache miss)

I Locality of reference: pack data of the same working set close
to one another so they’re loaded in common cache lines

I Common practice: most frequently accessed members in a
structure come first

I The alignment of a structure is the highest alignment of its
members

I Usually requires implementation-specific compiler support for
advanced control, e.g. attribute ((aligned(value)))
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Alignment

$ pahole x15

...

struct spinlock {

unsigned int locked; /* 0 4 */

/* size: 4, cachelines: 1, members: 1 */

/* last cacheline: 4 bytes */

};

...

struct list {

struct list * prev; /* 0 8 */

struct list * next; /* 8 8 */

/* size: 16, cachelines: 1, members: 2 */

/* last cacheline: 16 bytes */

};

...

struct task {

struct spinlock lock; /* 0 4 */

/* XXX 4 bytes hole, try to pack */

struct list node; /* 8 16 */

struct list threads; /* 24 16 */

struct vm_map * map; /* 40 8 */

char name[32]; /* 48 32 */

/* --- cacheline 1 boundary (64 bytes) was 16 bytes ago --- */

/* size: 80, cachelines: 2, members: 5 */

/* sum members: 76, holes: 1, sum holes: 4 */

/* last cacheline: 16 bytes */

};

...
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Data Structures

I Parameters: complexity, locality of reference, overhead

I Common structures: arrays, linked lists, hash tables, balanced
trees

I Modern structures: tries (radix trees, Judy arrays, etc...)
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Data Structures

Figure: Internal structure of a radix tree
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Type Punning

I Access the same memory through differently typed pointers

I Strict aliasing: two pointers of different type aren’t allowed to
refer to the same memory (introduced in C99)

I Cast: use only when you know what you’re doing (may silence
important warnings, breaks strict aliasing)

I Cast: mind the expected alignment of the underlying memory,
e.g. casting char[] to struct x * may cause bus errors)

I Union pointer: the clean way (but implementation defined)
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Access Control

I Bad memory access control is a major source of bugs

I Synchronize access to objects (e.g. with locks)

I Compiler barriers: prevent code reordering

I Memory barriers: prevent memory access reordering

I Release on no-user guarantee (e.g. reference counters)

I Garbage collection: automatic release once unreferenced (but
mind tricky situations producing stale references such as
circular references)

I Advanced techniques: lock-free and wait-free algorithms,
batched reference counting (e.g. RCU)
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Real Time

I Main constraints: no unexpected latency

I Reserve all resources prior to execution

I Disabling swap is not enough ! (doesn’t prevent page faults)

I Lock memory to prevent fetching data from disks

I Bind to processor to prevent migration (and in turn, faults on
another processor)

I POSIX: locking memory prevents pageins, not page faults, i.e.
it may be required to manually access pages to fault them in
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Device Memory

I Historic way: volatile pointers

I Problem: restricted by C specification

I Device memory should be mapped uncached

I Use specialized kernel accessors (for example
io remap page range on Linux)
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C11

I New C Standard

I New keywords and functions

I Alignment: Alignas, Alignof, aligned alloc

I Multithreading: Thread local, Atomic

I Analyzability
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Conclusion

Further reading :

I What Every Programmer Should Know About Memory by
Ulrich Drepper

I Memory as a Programming Concept in C and C++, Frantisek
Franek

I The Design and Implementation of the FreeBSD Operating
System, Marshall Kirk McKusick and George V. Neville-Neil

I Memory Barriers: a Hardware View for Software Hackers,
Paul E. Mckenney
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