
Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Memory Management
A View for Software Engineers

Richard Braun

April 7 2014

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Framework

I C / Assembly

I Unix (POSIX)

I System / network programming

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Goals

I Performance

I Scalability

I Debugging

I Best practices

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Hardware Layout

CPU

Flash ROM

(BIOS)

Super I/O
Serial Port

Parallel Port
Floppy Disk

Keyboard
Mouse

Northbridge

(memory

controller hub)

Southbridge
(I/O controller

hub)

IDE
SATA
USB

Ethernet
Audio Codec

CMOS Memory

Onboard

graphics

controller

Clock

GeneratorGraphics

card slot

High-speed

graphics bus

(AGP or PCI

Express)

Chipset

Front-side

bus

Memory
bus

Memory Slots

PCI

Bus

PCI Slots

LPC

Bus

Internal

Bus

PCI

Bus

Cables and

ports leading

oଏ-board

Figure: Common Intel-based hardware layout

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

CPU Cache Hierarchy

Main Memory

<= 8 GB

Other

CPUs

L2 Unified

1 MB 16-way

L2 ITLB

512 entries

4-way

L2 DTLB

512 entries

4-way

L1 Instruction Cache

64KB 2-way

L1 Data Cache

64KB 2-way 2 ports

L1 ITLB

4 KB

32 entries

full assoc

4/2 MB

8 entries

full assoc

L1 DTLB

4 KB

32 entries

full assoc

4/2 MB

8 entries

full assoc

Figure: AMD Athlon 64 K8 core hierarchy

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Cache Lines

I Processors transfer memory in units of cache lines

I Cache lines are stored in processor caches (L1/L2/L3)

I Data with close addresses are likely to share cache lines

I Current cache line sizes are usually 32 bytes (embedded) or
64 bytes (desktop/server)

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Symmetric Multiprocessor

SMP - Symmetric Multiprocessor System

System Bus

Cache Cache Cache

Processor

1

Processor

2

Processor

n

Main

Memory

By Ferruccio Zulian - Milan.Italy

Bus

Arbiter

I/O

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Non-Uniform Memory Access

M M

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Memory Hierarchy

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Direct Memory Access

I Transfer data without consuming processor cycles

I Transfers in burst / cycle stealing / transparent modes

I Address / data bus sharing

I Arbitration required, can cause latency indeterminacy

I Third-party DMA: dedicated DMA controllers (e.g. ISA)

I First-party DMA: bus mastering (e.g. PCI, AMBA AHB)

I Cache coherency issues

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Direct Memory Access

Figure: Third-party DMA

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Data Storage Devices

I Magnetic storage: regular file systems (ext4, zfs, btrfs)

I Flash memory: CF/MMC/SD, USB keys, SSD (NAND based)

I Main flash types: NOR (slow, small) and NAND (faster,
larger)

I Basic operation: block erasure

I Flash Translation Layer: block selection, wear leveling

I Without FTL, use specialized file systems (jffs2, ubifs)

I Reliability: use ECC memory to prevent bit flips

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Virtual Memory

I Swapping: more memory than physically available

I Address spaces: isolate processes from each other

I Shared memory: reuse physical memory in many processes

I Access rights: fine-grained permissions on shared memory

I Paging: manage virtual memory in page units

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Virtual Address Space

Virtual address space Physical address space

0x00000000

0x00010000

0x10000000

0x7fffffff

0x00000000

0x00ffffff

page belonging to process

page not belonging to process

text

data

stack

Figure: Virtual-to-physical address translations

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Physical Translations

I MMU: Memory Management Unit

I Handles virtual-to-physical address translations

I Dedicated processor cache: TLB (Translation Lookaside
Buffer)

I Translation unit: the page

I Modern processors can configure the page size, from 4 KiB
up to 2 GiB (c.f. Linux hugetlbfs)

I Virtualization: nested page tables

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Physical Translations

08162431 15 723

..
.

..
.

..
.

..
.

..
.

..
.

4
K

 m
e
m

o
ry

 p
a
g
e

10

32*

1210

Linear address:

page directory

32 bit PD

entry

CR3

*) 32 bits aligned to a 4-KByte boundary

page table

32 bit PT

entry

Figure: 2-level x86 page table structure

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Logical Translations

I Address space: list of per process mappings

I Page: basic unit of memory, referenced in a memory object
when resident (i.e. present in physical memory)

I Memory object: provides memory content (e.g. files)

I Mapping entry: associates a memory object with virtual
addresses

I Page fault: exception used to implement on-demand paging

I Copy-on-write: make fork and data copies fast (zero-copy)

I Locked memory: underlying physical pages can’t get evicted

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Logical Translations

Figure: Virtual address space structure of a Linux process

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Logical Translations

Figure: NetBSD UVM overview

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

The Page Cache

I ”Free memory” should be thought of as ”unused memory”

I Make use of that memory in the form of a data cache

I Data (file or disk) are cached in physical memory pages

I Writeback caching: flushes on eviction or after a timeout

I Eviction is triggered by memory pressure only

I LRU-like algorithms select evicted pages

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Memory Mapping

I Access data (files, disks, devices) as memory

I Optimize data transfers with zero-copy techniques

I Mappings are either shared or private

I Share memory by mapping content in multiple address spaces

I 64-bits systems benefit the most

I POSIX: mmap, munmap, mprotect

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Endianness

I Data order in a word

I Common orders: little endian and big endian

I Big endian: 1234 (”natural” order)

I Big endian is the standard ”network byte order”

I Little endian: 4321 (”reversed” order)

I Little endian allows easy variable-size operations

I POSIX: htonl, htons, ntohl, ntohs convert between network
and host byte orders

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Endianness

s t r u c t i p h d r
{

#i f BYTE ORDER == LITTLE ENDIAN
uns igned i n t i h l : 4 ;
uns igned i n t v e r s i o n : 4 ;

#e l i f BYTE ORDER == BIG ENDIAN
uns igned i n t v e r s i o n : 4 ;
uns igned i n t i h l : 4 ;

#e l s e
e r r o r ” P l e a s e f i x <b i t s / end ian . h>”
#end i f

u i n t 8 t t o s ;
u i n t 1 6 t t o t l e n ;
u i n t 1 6 t i d ;
u i n t 1 6 t f r a g o f f ;
u i n t 8 t t t l ;
u i n t 8 t p r o t o c o l ;
u i n t 1 6 t check ;
u i n t 3 2 t sadd r ;
u i n t 3 2 t daddr ;
/∗The op t i o n s s t a r t he r e . ∗/

} ;

Figure: Definition of the IP header in the GNU C library

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Alignment

I Determine where data start in memory

I Power-of-two value

I Architecture can forbid unaligned memory accesses

I When allowed, they’re slower (still faster than a cache miss)

I Locality of reference: pack data of the same working set close
to one another so they’re loaded in common cache lines

I Common practice: most frequently accessed members in a
structure come first

I The alignment of a structure is the highest alignment of its
members

I Usually requires implementation-specific compiler support for
advanced control, e.g. attribute ((aligned(value)))

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Alignment

$ pahole x15

...

struct spinlock {

unsigned int locked; /* 0 4 */

/* size: 4, cachelines: 1, members: 1 */

/* last cacheline: 4 bytes */

};

...

struct list {

struct list * prev; /* 0 8 */

struct list * next; /* 8 8 */

/* size: 16, cachelines: 1, members: 2 */

/* last cacheline: 16 bytes */

};

...

struct task {

struct spinlock lock; /* 0 4 */

/* XXX 4 bytes hole, try to pack */

struct list node; /* 8 16 */

struct list threads; /* 24 16 */

struct vm_map * map; /* 40 8 */

char name[32]; /* 48 32 */

/* --- cacheline 1 boundary (64 bytes) was 16 bytes ago --- */

/* size: 80, cachelines: 2, members: 5 */

/* sum members: 76, holes: 1, sum holes: 4 */

/* last cacheline: 16 bytes */

};

...

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Data Structures

I Parameters: complexity, locality of reference, overhead

I Common structures: arrays, linked lists, hash tables, balanced
trees

I Modern structures: tries (radix trees, Judy arrays, etc...)

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Data Structures

Figure: Internal structure of a radix tree

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Type Punning

I Access the same memory through differently typed pointers

I Strict aliasing: two pointers of different type aren’t allowed to
refer to the same memory (introduced in C99)

I Cast: use only when you know what you’re doing (may silence
important warnings, breaks strict aliasing)

I Cast: mind the expected alignment of the underlying memory,
e.g. casting char[] to struct x * may cause bus errors)

I Union pointer: the clean way (but implementation defined)

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Access Control

I Bad memory access control is a major source of bugs

I Synchronize access to objects (e.g. with locks)

I Compiler barriers: prevent code reordering

I Memory barriers: prevent memory access reordering

I Release on no-user guarantee (e.g. reference counters)

I Garbage collection: automatic release once unreferenced (but
mind tricky situations producing stale references such as
circular references)

I Advanced techniques: lock-free and wait-free algorithms,
batched reference counting (e.g. RCU)

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Real Time

I Main constraints: no unexpected latency

I Reserve all resources prior to execution

I Disabling swap is not enough ! (doesn’t prevent page faults)

I Lock memory to prevent fetching data from disks

I Bind to processor to prevent migration (and in turn, faults on
another processor)

I POSIX: locking memory prevents pageins, not page faults, i.e.
it may be required to manually access pages to fault them in

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Device Memory

I Historic way: volatile pointers

I Problem: restricted by C specification

I Device memory should be mapped uncached

I Use specialized kernel accessors (for example
io remap page range on Linux)

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

C11

I New C Standard

I New keywords and functions

I Alignment: Alignas, Alignof, aligned alloc

I Multithreading: Thread local, Atomic

I Analyzability

Memory Management
A View for Software

Engineers

Richard Braun

Introduction

Hardware Overview

Peripherals

Direct Memory Access

Data Storage Devices

Virtual Memory

Physical Translations

Logical Translations

The Page Cache

Memory Mapping

Programming
Considerations

Endianness

Alignment

Data Structures

Type Punning

Access Control

Real Time

Device Memory

C11

Conclusion

Conclusion

Further reading :

I What Every Programmer Should Know About Memory by
Ulrich Drepper

I Memory as a Programming Concept in C and C++, Frantisek
Franek

I The Design and Implementation of the FreeBSD Operating
System, Marshall Kirk McKusick and George V. Neville-Neil

I Memory Barriers: a Hardware View for Software Hackers,
Paul E. Mckenney

	Introduction
	Hardware Overview
	Peripherals
	Direct Memory Access
	Data Storage Devices

	Virtual Memory
	Physical Translations
	Logical Translations
	The Page Cache
	Memory Mapping

	Programming Considerations
	Endianness
	Alignment
	Data Structures
	Type Punning
	Access Control
	Real Time
	Device Memory
	C11

	Conclusion

