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Framework

» C / Assembly
» Unix (POSIX)

> System / network programming
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Goals
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Performance
Scalability
Debugging
Best practices
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Hardware Overview
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Figure: Common Intel-based hardware layout
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Cache Lines
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Processors transfer memory in units of cache lines
Cache lines are stored in processor caches (L1/L2/L3)
Data with close addresses are likely to share cache lines

Current cache line sizes are usually 32 bytes (embedded) or
64 bytes (desktop/server)
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Non-Uniform Memory Access
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Computer Memory Hierarchy e @i

small size

processor registers
small capacity

very fast, very expensive

power on
immediate term
small size

processor cache
small capacity

very fast, very expensive

medium size

power on random access memory
medium capacity very short term fast, affordable
small size power off flash / USB memory
large capacity short term slower, cheap
large size power off hard drives
very large capacity mid term slow, very cheap
large size power off tape backup
very large capacity long term

very slow, affordable




Direct Memory Access
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Transfer data without consuming processor cycles
Transfers in burst / cycle stealing / transparent modes
Address / data bus sharing

Arbitration required, can cause latency indeterminacy
Third-party DMA: dedicated DMA controllers (e.g. ISA)
First-party DMA: bus mastering (e.g. PCl, AMBA AHB)
Cache coherency issues
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Data Storage Devices

Magnetic storage: regular file systems (ext4, zfs, btrfs)

» Flash memory: CF/MMC/SD, USB keys, SSD (NAND based)

v
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Main flash types: NOR (slow, small) and NAND (faster,
larger)

Basic operation: block erasure

Flash Translation Layer: block selection, wear leveling
Without FTL, use specialized file systems (jffs2, ubifs)
Reliability: use ECC memory to prevent bit flips
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Virtual Memory

Swapping: more memory than physically available
Address spaces: isolate processes from each other
Shared memory: reuse physical memory in many processes

Access rights: fine-grained permissions on shared memory
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Paging: manage virtual memory in page units
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Virtual address space Physical address space
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Figure: Virtual-to-physical address translations




Physical Translations

» MMU: Memory Management Unit
» Handles virtual-to-physical address translations

» Dedicated processor cache: TLB (Translation Lookaside
Buffer)

» Translation unit: the page

» Modern processors can configure the page size, from 4 KiB
up to 2 GiB (c.f. Linux hugetlbfs)

» Virtualization: nested page tables
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» Address space: list of per process mappings

> Page: basic unit of memory, referenced in a memory object
when resident (i.e. present in physical memory) Logical Translations

» Memory object: provides memory content (e.g. files)

» Mapping entry: associates a memory object with virtual
addresses

» Page fault: exception used to implement on-demand paging
» Copy-on-write: make fork and data copies fast (zero-copy)

> Locked memory: underlying physical pages can't get evicted
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» vm_end: first address outside virtual memory area

——» vm_start: first address within virtual memory area
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" Free memory” should be thought of as " unused memory”

Make use of that memory in the form of a data cache

The Page Cache

Data (file or disk) are cached in physical memory pages
Writeback caching: flushes on eviction or after a timeout

Eviction is triggered by memory pressure only
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LRU-like algorithms select evicted pages




Memory Mapping
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Access data (files, disks, devices) as memory
Optimize data transfers with zero-copy techniques
Mappings are either shared or private

Share memory by mapping content in multiple address
64-bits systems benefit the most

POSIX: mmap, munmap, mprotect
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Data order in a word

Common orders: little endian and big endian
Big endian: 1234 ("natural” order)

Big endian is the standard " network byte order”
Little endian: 4321 ("reversed” order) Endianness

Little endian allows easy variable-size operations
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POSIX: htonl, htons, ntohl, ntohs convert between network
and host byte orders
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struct iphdr

{

#if _BYTE_.ORDER == __LITTLE_ENDIAN
unsigned int ihl:4;
unsigned int version :4;

#elif _BYTE.ORDER — __BIG_ENDIAN
unsigned int version:4;
unsigned int ihl:4;

#else

# error "Please_fix _<bits/endian.h>"

#endif
u_int8_t tos;
u_intl6_t tot_len;
u_intl6_t id;
u_intl6_t frag_off;
u_int8_t ttl;
u_int8.-t protocol;
u_intl6_t check;
u_int32_t saddr;
u_-int32_t daddr;

/*The options start here. x/

Endianness

Figure: Definition of the IP header in the GNU C library
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Determine where data start in memory

Power-of-two value

Architecture can forbid unaligned memory accesses

When allowed, they're slower (still faster than a cache miss)

Locality of reference: pack data of the same working set close
to one another so they're loaded in common cache lines
Common practice: most frequently accessed members in a
structure come first

The alignment of a structure is the highest alignment of its
members

Usually requires implementation-specific compiler support for
advanced control, e.g. __attribute__((aligned(value)))

Memory Management
A View for Software
Engineers

Richard Braun

Alignment




Memory Management

Al |g nment A View for Software

Engineers

ard Braun

$ pahole x15

struct spinlock {
unsigned int locked; /% 0 4 x/

/* size: 4, cachelines: 1, members: 1 */
/* last cacheline: 4 bytes */

};
struct list {
struct list prev; /% 0 8 */
struct list next; /% 8 8 */
/* size: 16, cachelines: 1, members: 2 */
/* last cacheline: 16 bytes */
struct task { Alignment
struct spinlock lock; /% 0 4 %/
/* XXX 4 bytes hole, try to pack */
struct list node; /% 8 16 */
struct list threads; /% 24 16 */
struct vm_map * map; /* 40 8 x/
char name [32]; /* 48 32 */
/* --- cacheline 1 boundary (64 bytes) was 16 bytes ago --- */

/* size: 80, cachelines: 2, members: 5 */
/* sum members: 76, holes: 1, sum holes: 4 */
/* last cacheline: 16 bytes */




Data Structures

» Parameters: complexity, locality of reference, overhead
» Common structures: arrays, linked lists, hash tables, balanced

trees
» Modern structures: tries (radix trees, Judy arrays, etc...)
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Data Structures

Figure: Internal structure of a radix tree




Type Punning

» Access the same memory through differently typed pointers

» Strict aliasing: two pointers of different type aren’t allowed to
refer to the same memory (introduced in C99)

» Cast: use only when you know what you're doing (may silence
important warnings, breaks strict aliasing)

» Cast: mind the expected alignment of the underlying memory,
e.g. casting char[] to struct x * may cause bus errors)

» Union pointer: the clean way (but implementation defined)
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Access Control
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Bad memory access control is a major source of bugs
Synchronize access to objects (e.g. with locks)
Compiler barriers: prevent code reordering

Memory barriers: prevent memory access reordering
Release on no-user guarantee (e.g. reference counters)

Garbage collection: automatic release once unreferenced (but
mind tricky situations producing stale references such as
circular references)

Advanced techniques: lock-free and wait-free algorithms,
batched reference counting (e.g. RCU)
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Main constraints: no unexpected latency
Reserve all resources prior to execution
Disabling swap is not enough ! (doesn't prevent page faults)

Lock memory to prevent fetching data from disks
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Bind to processor to prevent migration (and in turn, faults on
another processor)

» POSIX: locking memory prevents pageins, not page faults, i.e.
it may be required to manually access pages to fault them in

Real Time




Device Memory

Historic way: volatile pointers
Problem: restricted by C specification
Device memory should be mapped uncached

Use specialized kernel accessors (for example
io_remap_page_range on Linux)
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» New C Standard

» New keywords and functions

> Alignment: _Alignas, _Alignof, aligned_alloc
» Multithreading: _Thread_local, _Atomic

» Analyzability
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Further reading :

» What Every Programmer Should Know About Memory by
Ulrich Drepper

» Memory as a Programming Concept in C and C++, Frantisek
Franek

» The Design and Implementation of the FreeBSD Operating
System, Marshall Kirk McKusick and George V. Neville-Neil

» Memory Barriers: a Hardware View for Software Hackers,
Paul E. Mckenney

Conclusion
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